
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

�Correspondi
E-mail addre
Nuclear Instruments and Methods in Physics Research A 534 (2004) 24–28

www.elsevier.com/locate/nima
Replica consistency in a Data Grid

Andrea Domenicia,b, Flavia Donnob,c, Gianni Pucciania, Heinz Stockingerc,�,
Kurt Stockingerc

aDIIEIT, University of Pisa, v. Diotisalvi 2, 56122 Pisa, Italy
bINFN Pisa, Edificio C, Polo Fibonacci, Via F. Buonarroti, 2 Pisa, Italy

cCERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland

Available online 30 July 2004
Abstract

A Data Grid is a wide area computing infrastructure that employs Grid technologies to provide storage capacity and

processing power to applications that handle very large quantities of data. Data Grids rely on data replication to

achieve better performance and reliability by storing copies of data sets on different Grid nodes. When a data set can be

modified by applications, the problem of maintaining consistency among existing copies arises.

The consistency problem also concerns metadata, i.e., additional information about application data sets such as

indices, directories, or catalogues. This kind of metadata is used both by the applications and by the Grid middleware to

manage the data. For instance, the Replica Management Service (the Grid middleware component that controls data

replication) uses catalogues to find the replicas of each data set. Such catalogues can also be replicated and their

consistency is crucial to the correct operation of the Grid. Therefore, metadata consistency generally poses stricter

requirements than data consistency. In this paper we report on the development of a Replica Consistency Service based

on the middleware mainly developed by the European Data Grid Project. The paper summarises the main issues in the

replica consistency problem, and lays out a high-level architectural design for a Replica Consistency Service. Finally,

results from simulations of different consistency models are presented.

r 2004 Elsevier B.V. All rights reserved.

PACS: 89.20.Ff

Keywords: Grid computing; Simulation; Replication; Data consistency
1. Introduction

Several Grid data management middleware
systems address replica management solutions that
e front matter r 2004 Elsevier B.V. All rights reserve

ma.2004.07.052

ng author.

ss: heinz.stockinger@cern.ch (H. Stockinger).
are usually file based [1]. Often, replica consistency
is not an issue when data is treated as read-only,
which implies that inconsistency may only be
due to system failures or accidental data
corruption.
However, as Grid solutions are used by an

increasing number of applications, requirements
d.

www.elsevier.com/locate/nima

ARTICLE IN PRESS

A. Domenici et al. / Nuclear Instruments and Methods in Physics Research A 534 (2004) 24–28 25
arise for mechanisms that maintain the consistency
of replicated data and metadata that can change
over time. An earlier work [2] reports on some
models for such mechanisms and provides a basic
background to the replica consistency service
presented in this article. In short, the replica
consistency problem deals with the update
synchronisation of multiple copies (replicas)
of a file: one file is updated and all other
replicas then have to be synchronised in order to
have the same contents and thus provide a
consistent view.
In the database as well as in the distributed

computing communities, several solutions exist
already [3] that are only partially applicable to
Grid solutions. In contrast to a distributed
database management system, a Data Grid usually
has to deal with heterogeneous data whereas a
database management system has homogeneous,
low-level access and full control of all data it
manages. For example, a database management
system provides transactions, read/write opera-
tions, locking, etc., which result in a fully
consistent view on the data. In other words, a
database user can rely on the database manage-
ment system to keep all data consistent. In
addition, the database management system pro-
vides all data manipulation features like insert,
update, etc. In contrast, Data Grids often deal
with file system access and thus have limited
control over data consistency. One can read a file
while another one can write into the same file: file
systems usually do not provide strict transactions
or locking of data, thus making inconsistencies
possible. This is the basic challenge a consistency
service has to face and the basic question is how to
design and develop such a service that is compa-
tible with the underlying Grid resource manage-
ment. Other important differences between Data
Grids and distributed databases are the very large
number of files a Grid is expected to handle
(�500M replicas), the highly dynamic Grid
configuration, and the need for scalability.
In this article, we outline a Replica Consistency

Service (RCS) (Section 2), discuss a simulation
tool that models the basic architecture (Section 3)
and then present preliminary results of the
simulator in Section 4.
2. Architecture

In the following section we first outline the basic
service interface and then isolate the functionalities
of the process of replica update synchronisation.
Based on these main functionalities, an architec-
ture for the consistency service with all the main
components is described.

2.1. Overview

We start from the client’s perspective and then
go into the details of the update process.
In general, the following functionalities are re-
quired:

Client interface for the consistency service: pro-
vides the basic operations invoked by
clients of the service, that are typically
other Grid services but may also be end-
user applications.

File update mechanism: an important part of a
consistency service is to update a file and
apply the update to all its replicas. Several
basic building blocks are required for such
a task, including the File Update mechan-
ism and the closely related Update Pro-
pagation protocol. The File Update
mechanism is in charge of applying
changes to a single replica.

Update propagation protocol: whereas the File
Update mechanism takes care of a local
update, an update propagation protocol is
required that uses a transaction system for
propagating updates to remote sites where
replicas reside and then applies the File
Update mechanism at the remote site.
This protocol needs to be efficient over
wide area networks and to take into
account that a large number of replicas
might exist.

2.2. Components of the consistency service

Based on the previous discussion, the following
basic components are required for a consistency
service:

ARTICLE IN PRESS

Service
Local Consistency

Service
Local Consistency

Service
Local Consistency

Lock Server Lock Server Lock Server

Consistency Service client

Consistency Service

Storage Element 1
Storage Element 2

Storage Element 3

Replica Catalogue

Consistency Service
Catalogue

Fig. 1. Architecture of the consistency service.

A. Domenici et al. / Nuclear Instruments and Methods in Physics Research A 534 (2004) 24–2826
Consistency service: is the service that provides the
main entry point for a user via a
consistency service client. Consequently,
the Consistency Service needs to provide
an interface to the end-user to update a
file. However, the actual file update is then
done by a Local Consistency service
where the physical file resides.

Transaction system: for the update propagation
protocol as well as for all other commu-
nication between components.

Local consistency service (LCS): that locally up-
dates a file and then propagates the
changes to remote sites using the Transac-
tion System. The LCS needs to provide an
internal interface to the Consistency
Service to update a file and further
provide an interface for other LCS to
exchange update propagation requests.

File lock service: serialisation of file access (and in
particular updates in a distributed system)
requires that files are locked and thus
access is denied to certain users. A Lock
Service is required at each storage system
and is responsible for holding and releas-
ing locks for all files local to the storage
system.

Replica catalogue: to retrieve the location of files
in the storage systems.

Replica consistency catalogue: needs to store all
meta data that is required for the replica
update process. For instance, the catalo-
gue needs to store file attributes like:
master, state of a file (stale, up-to-date),
and other information used by the RCS.
Replica manager or File copier: to transfer file
updates to remote sites.

The interaction of the components involved
in the Consistency Service is depicted in Fig. 1.
For further design details, we refer the reader
to [4].
3. Implementation

We have implemented a simulation tool that
models the entire architecture discussed in the
previous section. The tool is based on the Optor-
Sim Grid simulator [5], extended with the Replica
Consistency Service components. In this way,
we can simulate job submission in a Grid environ-
ment together with replication and update syn-
chronisation.
The simulator implements a synchronous model

(all replicas are synchronously updated) as well as
an asynchronous one (one replica is updated and
the others are asynchronously modified at a later
point in time) [2].

3.1. Synchronous model

In the synchronous model we assume that the
application uses a local replica and modifies it.
Once the update has finished locally, all replicas
are synchronised. However, as jobs may work on
private replicas, conflicts may still occur. A job
that meets a conflict must get a fresh replica and
redo the operation.

3.2. Asynchronous model

In [2] we presented several asynchronous repli-
cation models, and here we have selected a ‘‘single
master approach’’ where only one replica can be
modified by the end users and all others are
synchronised (updated) by the RCS.
4. Experimental results

Simulations have been carried out to experiment
with the two replica consistency models introduced

ARTICLE IN PRESS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1

write probability

retried requests rate asynch
synch

Fig. 2. Retried requests rate.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

write probability

conflicts/retried request rate asynch
synch

Fig. 3. Conflict/retried request rate.

A. Domenici et al. / Nuclear Instruments and Methods in Physics Research A 534 (2004) 24–28 27
above. The Grid infrastructure we simulated
consisted of 10 Storage Elements and 3 Computing
Elements, with a simulated workload of 4 different
user jobs requesting 5 logical files. In each
simulation run 50 job instances were executed. A
job issues requests for operations on logical files to
a Replica Manager that finds or creates a suitable
replica that the job can process.
Next, the job issues an update request to the

RCS, using its replica as the update source. We use
the term logical to stress the difference between
logical files and physical replicas. Logical files and
replicas have version numbers, and a replica is
stale if its version is earlier than the one for the
logical file. When a logical file is locked, all its
replicas are locked as well.
The simulator provides the following data:

read or write requests: numbers of read (Rr) and
write (Rw) requests for logical files;

retried requests: number Rretr of requests that
have been re-issued at least once, due to
conflicts (see below) or locks;

conflicts: number C of update requests having a
stale replica as a source;

logical file locks: number L of update requests for
locked files;

stale read or write: numbers of read (Sr) and write
(Sw) requests for which the Replica
Manager selects a stale replica.

The total number of requests on replicas (as
opposed to logical files) is then T ¼ Rr
þRw þ C þ L, and W ¼ T � Rr is the number of
write requests on replicas. We can then compute
the following quantities:

retried request rate: Rretr=T ;
stale read rate: Sr=Rr;
stale write rate: Sw=W ;
logical file lock rate: L=W ;
conflict rate: C=W ;
conflicts/retried requests rate: C=Rretr.

The simulations performed so far aimed at study-
ing how the above rates vary with the frequency
of write operations. With the simplifying assump-
tion that all jobs have the same probability
of issuing write requests, batches of simulation
runs have been executed, where in each batch
the simulator was configured for a different
write probability and a different consistency
model. The averages across the simulation
runs have then been plotted against the write
probabilities. Figs. 2 and 3, for example, summar-
ise the results for C=Rretr and Rretr=T . These two
parameters tell us how often requests for logical
files cannot be satisfied immediately, and how
many times such requests result in version
conflicts.

ARTICLE IN PRESS

A. Domenici et al. / Nuclear Instruments and Methods in Physics Research A 534 (2004) 24–2828
5. Conclusions

We have presented an overview of the design of
a RCS. Due to the complexity of the service we
first studied its behaviour using simulation and
then we will implement the service using a web
service approach. Our simulation tool has outlined
the basic behaviour, it shows promising results on
what level of consistency can be gained, and
provides valuable insights for the implementation
of the service.
References

[1] P. Kunszt, E. Laure, H. Stockinger, K. Stockinger,

Advanced replica management with reptor, in: Fifth
International Conference on Parallel Processing and Ap-

plied Mathematics, Czestochowa, Poland, September 7–10,

2003.

[2] D. Düllmann, W. Hoschek, J. Jaen-Martinez, A. Samar, H.

Stockinger, K. Stockinger, Models for replica synchronisa-

tion and consistency in a data grid, in: Tenth IEEE

Symposium on High Performance and Distributed

Computing (HPDC-10), San Francisco, CA, August 7–9,

2001.

[3] J. Gray, P. Helland, P.E. O’Neil, D. Shasha, The dangers of

replication and a solution, in: SIGMOD Conference,

Tucson, AZ, May 12–14, 1996.

[4] H. Stockinger, A. Domenici, F. Donno, G. Pucciani, K.

Stockinger, Replica Consistency Service (RCS)—design

principles and basic architecture v0.3, Technical report—

Draft, August 21, 2003.

[5] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar, K.

Stockinger, F. Zini, Int. J. High Performance Comput.

Appl. 17 (4) (2003).

	Replica consistency in a Data Grid
	Introduction
	Architecture
	Overview
	Components of the consistency service

	Implementation
	Synchronous model
	Asynchronous model

	Experimental results
	Conclusions
	References

